Rabu, 03 Juni 2020

Barisan dan Deret Aritmetika


Barisan adalah kumpulan objek-objek yang disusun menurut pola tertentu. Objek pertama dinamakan
suku pertama, objek kedua dinamakan suku kedua, objek ketiga dinamakan suku ketiga dan seterusnya sampai objek ke-n dinamakan suku ke-n atau Un. Jika objek-objek tersebut berupa bilangan, maka bentuk penjumlahan dari objek-objek tersebut sampai n suku dinamakan deret.

Barisan aritmetika adalah suatu barisan angka-angka dimana:

U2 – U1 = U3 – U2 = U4 – U3= … = Un – Un–1 = beda (merupakan angka yang tetap).

Sehingga :
(1) 3, 7, 11, 15, 19, 23, 27, 31, 35 adalah barisan aritmetika dengan beda 4
(2) 63, 58, 53, 48, … , 3 adalah barisan aritmetika dengan beda -5
(3) 5 + 8 + 11 + 14 + 17 + … + 50 adalah deret aritmetika dengan beda 3
(4) 3 + 5 + 7 + 9 + 11 + 13 + … adalah deret aritmetika tak hingga dengan beda 2
Jika suku pertama suatu barisan aritmetika dinamakan a, maka diperoleh suku ke-n barisan aritmatika dirumuskan :


Sebagai contoh diketahui barisan : 3, 7, 11, …
Maka suku ke-6 dapat ditentukan dengan rumus :
U6 = a + (n – 1)b = 3 + (6-1)(4) = 3 + (5)(4) = 23

Untuk menentukan rumus jumlah sampai suku ke-n, dapat ditentukan dengan cara:


Sebagai contoh diketahui barisan : 3, 7, 11, 15, 19, 23, 27, …
Maka jumlah 6 suku pertama dapat ditentukan dengan rumus :
S6 = ½ n [2a + (n-1)b]
   = ½ (6) [2 . 3 + (5)4]
   = 78

0 komentar:

Posting Komentar